Balduzzi S, Rücker G, Schwarzer G (2019), How to perform a meta-analysis with R: a practical tutorial, Evidence-Based Mental Health; 22: 153-160.
Bornmann, L., Haunschild, R., & Mutz, R. (2021). Growth rates of modern science: A latent piecewise growth curve approach to model publication numbers from established and new literature databases. Humanities and Social Sciences Communications, 8(1), 224. https://doi.org/10.1057/s41599-021-00903-w
Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Mächler, M., & Bolker, B. M. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R Journal, 9(2), 378–400. https://doi.org/10.32614/RJ-2017-066
Cinar, O., Nakagawa, S., & Viechtbauer, W. (2022). Phylogenetic multilevel meta-analysis: A simulation study on the importance of modelling the phylogeny. Methods in Ecology and Evolution, 13(2), 383–395. https://doi.org/10.1111/2041-210X.13760
Kristensen, K., & McGillycuddy, M. (2025). Covariance structures with glmmTMB. https://cran.r-project.org/web/packages/glmmTMB/vignettes/covstruct.html
Lim, J. N., Senior, A. M., & Nakagawa, S. (2014). Heterogeneity in individual quality and reproductive trade-offs within species. Evolution, 68(8), 2306–2318. https://doi.org/10.1111/evo.12446
Viechtbauer, W. (2010). Conducting Meta-Analyses in R with the metafor Package. Journal of Statistical Software, 36(3), 1-48. https://doi.org/10.18637/jss.v036.i03
White T, Noble D, Senior A, Hamilton W, Viechtbauer W (2022). metadat: Meta-Analysis Datasets. R package version 1.2-0, https://CRAN.R-project.org/package=metadat.